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ANALYSIS OF  A TEXTILE ROPE WITH ANALYTICAL MODELS

A. Manes            Commission for Materials and Technique, Italian Alpine Club

Abstract: The stresses in the wires (fibres) forming a rope for mountaineering during sharp-edge test are
analysed. A reologic approach is introduced that allows modelling a rope from single fibres since the material and
cross section disposition of these are known. The limits, the difficulties, the first results and the future possibilities
of this new analytical approach are presented.

1 Introduction
“The rope is the main element of the belay chain and it
does not have sense to define the resistance of the other
elements without considering before the study of its
property.”
In this sentence, drawn out from an handbook by
C.I.M.T.[1] we find the nucleus of the techniques and
operations developed in order to assure  a safe
progression in alpine activitie. The rope  materials and
its geometrical construction, such as the nominal
disposition of fibres (wires), not only allow the rope to
withstand the applied forces, but also influence the
forces themselves. Such system needs therefore an
approach not more static but dynamic and an accurate
characterization of its mechanical properties.
A first approach can be to model a rope with a system
of masses, springs, dampers whit 1 D.O.F. (Degree Of
Freedom), linear whit constant coefficients, formula (1).
Such a model, supported  by a preventive experimental-
analytical identification of its parameters [2], is able to
simulate the course of the load in a rope  during
homologation test according to norm UNI EN 892 [3]
until to the achievment of the first peak of force.
Subsequently the actual rope introduces a non-linear
behaviour of the mechanical properties.
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It is useful to find alternatives such as to introduce more
complex systems with parameters not more constants
but variable according to assigned laws. .  Beyond the
difficulties in the resolution of such systems, (numerical
methods), the main problem is the identification of
parameters. These are unknown time variable functions
and are unknown. Therefore it is necessary to develop
reologic models for the ropes, the most possible similar
to the behaviour of the actual rope, in order to allow at
least, the identification of the shapes of these functions
leaving, then to an eventual numerical-experimental
optimisation the searching the values for the parameters
to be used..  The aim of the present paper is to
introduce this new approach . First of all we would like
to stress that this approach, considering the single fibres
and not the whole rope, has the great advantage of being
able to model a  rope before manufacturing and testing
(once the material and the geometrical construction is
known). The aforementioned advantage is, up to now,
only potential.   Currently, because of the complexity of

the analytical models, it is possible to draw only some
general considerations.  In particular, in this paper, we
will analyze the inner stresses in a rope for alpine use
during a sharp edge test  through the development of two
models.  The first one allows the calculation of the
stresses when on the rope is acting an axial force, the
second one is referred to the case in which the rope axis is
bent  over a sheave whit assigned curvatures.

2 Short discussion about “state of the art” of rope
modelling
We have to mention, first, that the present study is
originated from a study carried out by author on metallic
ropes [4]. Starting from this approach, some
modifications have been developed to allow the
application of the same models on textile ropes.
The exact calculation of the inner stresses in a metallic
rope is, nowadays, a much complex exercise, both for a
theoretical point of viewa  and from practical one.  We
obtain, in fact, a system of non-linear differentials
equations (dedicated for the examinatede rope)  that can
be solved under suitable hypotheses (sometimes very
restrictive) or through numerical. Still nowadays it is used
to say that  “designing a rope is more an art than a
science”. In fact a lot of acquired experience is requested
and, further,  safety factors (in the metallic rope) of about
10-15 are used.  With regards to the modelling textile
ropes problems, they increase due to hight number and
very little dimensions of fibres and the great deformations
of the rope during particular operating situations.
Therefore there are no possibilities to use linear models
(as in the metallic rope case) with a lot of substantial
complications. Moreover, the friction forces (generally
negligible in the short term for a well lubricated metallic
rope) generate a complex dissipative phenomena and also
a decreasing of the rope mechanical properties: these
phenomena are very difficult to model. Due to the
complexity of the problem a quite almost number of
papers have been published in which the problem of
analytical models has been clearly and systematically
faced. As in many engineering fields, the experimental
works come ahead the theory. G. A. Costello and J. W.
Philips examined the highly not linear behavior (due to
the variation of the pitch of helixs) of a rope stressed by a
tensile force. Applying the theory of the thin and
deformed beams in the space, with no  friction effect
between wires, a system of non linear, differentials
equations has been set up that, under suitable hypotheses,
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can be reduced to an algebraic equations system.  This
approach has been presented by the afore mentioned
authors in many papers and in a book, the only one
available, on ropes mechanics [5].
As far as the rope bending over an assigned radius
sheave concerns, the static and fatigue behaviour is
influenced by phenomena such as:
s The relative movements, in the contact points,

between the wires inside of a strand, between
the wires of two adjacent strands and between
the wires of the rope and sheave ; it has to be
noted that in the metallic rope  the macro-unit
used is the strand, formed by more wrapped
wires, like helical spring, round to a central
wire.

s The stresses variations near the contact points
zone..

s The stresses due to the variation of curvature of
the rope when it is bent

In this job we will analyze only the stresses from the
third phenomena. The first two ones need the
development of a much more complex theory in order
to model  the elasto-plastic contact on no-consistent
surface and in presence of friction forces [6].
The stress due to the bending in every location of the
rope, bent over a sheave, is directly related to the
change of local bending of the wires.  They are
characterized from an one initial curvature due to their
helical shape (around the rectilinear axis of the rope)
and assume a new curvature when the rope is bent (that
is the axis of the rope is bent).  From the local curvature
of the wires in the two aforementioned situations it is
possible to find the net variation in curvature and the
stresses generated inside the wires by the bending when
in the initial conditions the wires are considered as
unloaded.
For how much it concerns this approach, Stein and Bert
[7] present an exact mathematical metod for calculating
the curvature radius of a double helix around a
rectilinear axis. The curvatures calculation in the
deformed rope for a single and a double helix have been
carried out by Hobbs and Nabijou [8]. They explain the
procedures used for the calculation of the curvatures
with great details but, unfortunately, with also
numerous mistakes as it can be seen from the formulas
in the article. Therefore we have provided a complete
rebuild of all the formulations and we obtained
reasonable formulations analytically [4]. Unfortunately
we obtained correct formulation only for the single
curvature. Two others papers on  this subject  has been
written by Knapp [9] and Lee [10]. They developed the
same approach with the same corrections carried out by
author of this paper. Unfortunately the comparison
between these articles is very difficult due to  the
variety of adopted notations in order to identify some
angles; the difficulty is not only  symbolic but also
connected to the choice of these angles.
In the present paper we will  begin introducing these
models, whit tricks dedicated to the textile ropes, in
order to obtain the inner stresses in a climbing rope
stressed by bending and traction in order to  simulate a
sharp-edge test.

3 Data
The rope model is based  on the nominal geometric
characteristics and the assigned section disposition.
The irregular disposition and the shape of the macro units
(wicks and strands) in the rope, as well as the great
variations of the shape of the section, when the rope is
bending, have not been considered (due to the huge
modelling difficulties):  those points represent probably
the most restrictive approximation of this approach.  The
values marked by the symbol “ * ” have been obtained
directly or, when not possible, reasonably from a rope
analysis.  The values whit symbol “ $ “have been taken
from other experimental data [11].

External rope diameter: 10.5 [mm] *
Radius of every
inner wire (core):

0.0155 [mm]
(0.85TEX) $

Radius of every external
wire (sheath):

0.0145 [mm]
(0.75TEX) $

Number central filaments
(thin bundle of black
wires found in the center
of the rope, probably not
structural):

19 *

Helix angle of the lightly
twisted wires in order to
form the wicks of the
core:

65° (the data is a
parameter that can be
modified)

Helix angle of the wicks
in the strands of the core:

50° *

Number of inner strands: 4 *
Number of outer strands: 9 *

Diameter of every strands:

2.56 [milimeter] (the
diameter was chosen
to have a total number
of wires in the core
near to 40000, it is
however comprised in
a wrap of values
indicated in $)

Number of wicks in the
shealth:

48 $

Helix angle of the lightly
twisted wires in order to
form the wicks of the
sheath:

65° (the data is a
parameter that can be
modified)

Helix angle of the wicks
of the shealth on the core
of the rope:

45° $

Poisson coefficient for
Nylon

0,41   ([14] pag.178)

Nylon Elastic Module 2700 [MPa]([14]
pag.178)
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From geometric considerations and from the  reported
assumptions applied to a nominal  rope cross section,
we obtain:

Radius of every strand of the core: 0.5940500 [mm]
Number of wires along the
thickness in the radius of every
strand of the core:

19

Number of wires in every wick of
the core:

1066

Number of wires inside the core: 41574
Number of wires inside  the
sheath:

18426

Number of wires in every wick of
the sheath:

409

Number of wires along the
thickness in the radius of every
wick of the sheath:

12

Fig.1 Cross section of a textile rope for mountaineering

Fig.2   Cross Section of a strand

4 Axial force
4.1 Introduction to the model
Costello [5] consider the wires inside the rope like
single thin beams wrapped helically around to a central
wire (or core) to form a strand, which is wrapped
around to a central strand to form the rope. A set of six
equations (not linear) of equilibrium for every wire,
considered as a deformed beam in the space, are

written. . Subsequently a set of simplifications and the
congruence inside the strand and the rope (the central
core acts as constrain to the deformations of the other
wires) has been assumed transforming the problem into
an algebraic and linear one (only for metallic ropes).
We use the following general hypotheses:

s Perfectly elastic material governed by a
constituent law:

s 

εσ E=                              (2)

s Rope with nominal sizes: the rope can be
deformed, contracted and rotated but no elastic-
plastic  deformations, both due to external force
and technological process, have been considered.

s The friction between the single wires are not
considered.  This hypothesis is verified in case of
well lubricated metallic ropes and with low force
applied in which the contact stresses between the
single wires are not elevated.

We observe that in the case of textile ropes these
hypotheses are critical. In the case of high deformation
velocity (as in the case of a dynamic fall test) the first
hypothesis can be considered verified. For long times
application (but also for test temperatures higher than 40°
C) it would be necessary to introduce an visco-elastic
behavior of the material.

4.2 The model
As far as the model concerns, the one presented in [5] and
[4] with some variations illustrated afterwards In textile
rope, subject to great deformations (near 30%), the small
deformations hypothesis (generally used for metallic
ropes when the force applied is very far breaking
strength) is not applicable.

1222 <<−=∆ ααα                             (3)

The mechanical property (stiffness) of the rope depends

in fact on the pitch of the helix 2α  (and other similar

angles).  Due to its variation, 2α ,  the property of the
rope varies as well during the loading cycle in a non-
negligible way (3).
As far as loads on the wires concerns, every wire is
supposed to be provided with a punctiform area section
able to support only a uniform axial force, neglecting
twisting moments, shear stresses and bending moments.
The simplification is correct: in fact the error obtained by
the total projected wire forces on the rope axis is about
0,1 % of initial global load.

4.3 Application of the data to the model
The rope model has been built from the data of paragraph
3. The parameters used (not directly measurable or
assumed in a simplified way) have been chosen in such
way to analyse a Dodero dynamic fall test.  They have
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been chosen in order to have a deformation of ~ 30%
(29,69%) when a load of ~ 9KN (9002 N) is applied as
medium value obtained from tests [3]. The model
allows to know the axial stresses in all the wires of the
rope. The maximum axial stresses of a nominal section
of the rope, generated inside every wick, have been
represented. Generally, in case of pure axial load, these
maximum stresses are produced close to the wick
centre. These stresses become lower leaving the centre.

4.4 Validation of the model
The model unfortunately cannot be validated through an
analysis of absolute values.  The validation consists in
finding out a reasonable behaviour of the model when
some data are assumed as limit data.

s F =0 the program does not supply some result
due to divisions by 0.

s Equal pitch, all 90°: all the wires are equally
loaded.

s Equal pitch ,all 0°: all the wires are rings around
central axis.  The program does not supply
results.

4.5 Analysis of the stresses due to axial load
We now consider the stresses in the single wire (fibre)
due to a global axial load of 9 KN.  The more stressed
wires are those located in the thin wrap of black
filaments in the centre of the rope. Their deformation is
equal to the one of the rope; a rectilinear wire is not
relaxed (as for all the other wires) from helix (if a wire
is helically wrapped like a spring it has more yielding
when axially loaded).  The stress of these wire is:

σ axial central wire rope = 801 [ MPa ]

As far as the wires concerns, it is possible to assume
that in every wick there is, at least, a central wire
around which the others are helically wrapped; this is
true in the strands and, more in detail, in the wicks. This
central wire is subject only to the curvature of the wicks
in order to form the strands: the other wires are subject
to the curvature to form the wicks as well.  The central
wire is the most stressed when an axial load, as well as
with weak torsion, is applied. Since all the strands
behave in the same way for a pure axial load (their
position are not important), the stresses on the central
wire of every wick are equal for all the wicks with the
same property. There is a maximum stress value for the
wicks of the core and one for those of the sheath.

σ axial central wire core wicks  = 423 [ MPa ]

σ axial central wire shealth wicks = 296 [ MPa ]

The shape of the stresses distribution in the external
wires of the wicks (the wires wrapped around the

central wire) vary in a continuous way from a maximum,
the crown of centre wire adjacent wires (shown in Fig.3),
to a minimum, the more external crown. This is true for
both the types of wicks, core and sheath.

σ axial wires core wicks = 328 - 325 [MPa ]

σ axial wires sheath wicks = 227 - 226 [ MPa ]

The graphic in Fig.3 represents the maximum stress in the
external wires wrapped around to the central wire within
a wick.
The stresses therefore are very high, much higher than the
Nylon rupture strength (not exceeding 100 MPa); two
important considerations are nevertheless worthwhile
making:

s These values are referred to the maximum stresses
for external wire of every wick.  They represent
therefore an upper limit.

s The model is based on equations of equilibrium
with boundary conditions of congruence between
the deformations of the wires.  In the model the
friction due to the relative sliding of the wires is
not considered

4.6 Variation of rope axial stiffness with the load
In Fig. 4 the axial load F generated from a deformation of
the rope is represented.  The blue curve is evaluated
throughout the non-linear model developed starting from
the geometry of the rope; the red curve (a straight line) is
evaluated throughout the first value of pseudo-rigidity K
(5). This latter curve is reported only in order to show the
non linearity of the blue curve.

The blue curve seems can be interpolated as one parabola
of the type:
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the rope. It is possible moreover to calculate the variation
of the axial pseudo-stiffness K to the axial load F applied:

 
ε
F

K =                                              (5)
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where å is the axial deformation of the rope (equal, for
the congruence, to the axial deformation of black wires
in the center of the rope, according to the congruence.
In Fig. 5 it is possible to  notice how the stiffness
depends on the load slightly less than linearly.  As it is
lawful, the more the load increases, the more the rope
become deformed (the helixs become  more and more
straight), the more the stiffness increases.

Fig.  5 Variation of the pseudo-rigidity K in function of
the axial load applied to the rope

5 Bending sollicitation
5.1 Introduction to the model
This model consists in calculating for every point of all
the wires in the rope, the curvatures in the undeformed
and deformed condition. From the difference between
the two curvatures we obtain the value to use in the
stresses determination can be obtained (we assume that
the formation of the rope does not generate stresses). A
vector that has been assumed not to change direction
represents the curvature.

Fig.  6 Field of validity af scalar approximation

The assumption is enough correct in the metallic rope
bending with low curvature but is quite critical for
textile rope bent over a sharp edge. In this case the,
formulation is valid only for wires disposed in a narrow
arc whose axis passes through the rope centre and its
contact point with the sharp edge Fig. 6.
In the following paragraphs we will use the notation
adopted in [8].  It differs from that used previously for a

different pich angle β   instead of α (see Fig. 7). In

fact in the previous axial model the pitch of a wire AB
helically disposed around a direction parallel to AC axis

Fig. 7  Notations and sistem of reference for the model
used for the calculation of the curvature

as been characterized through angle α . CBA ˆ   Now

instead it is characterized by the angle β  BAC ˆ , (see
Fig.  7(c)). The model proposed allows calculating the
variations of curvature only in case of single curvature
that is the case of wires that are wrapped round to a
rectilinear axis, when in the non-deformed condition.
About the double curvature, some formulations are
available in the literature but limited to simple check tests
and further studies by the author of this paper have not
yet reached acceptable results.
Since the wires present in the rope have been wrapped
whit double and triple curvature, the information that
have been obtained, applying the model of single
curvature, are to considered as upper limit of the stresses
acting  in every wicks (further curvature relax bending
stresses).
We emphasise that the bending model does not have
constrains on forces equilibrium but only cinematic
restrains, due to the curvature radius of the rope axis

5.2 The  model
The rope wires axis is a three-dimensional curve in the
space; every point of it is characterized by a vector
position expressed in Cartesian total coordinates XYZ
Fig. 7.

kZjYiXh ++=                            (6)
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The curvature can be express, in vectorial shape, as
[11]:

2
3
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hh
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The derivative symbol represents a differentiation
regarding è  that is the angle of wrapping of the rope on
the cylinder (sharp edge) Fig. 7. In a single curvature
case the classic formula for the single undeformed helix
(with rectilinear axis) is:

   
r

sin β
ρ

2

0

1
=                                    (8)

where â is the helix angle and r  represents, in this
notation, the distance between the axis (rectilinear) of
the helix and the axis of the wire. The curvature of a
helix wrapped around a circular arc (deformed case) can
be calculated using previous formulation (7).  The
vector posizion for a single helix wrapped around a
cylinder is composed
from the following members:
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where φ  it is the parametric angle along helix, â is the
helix pich and R the radius of curvature of rope axis,
that is the distance between the axis of cylinder on
which the rope is laied down and the axis of the same
rope.  The Fig. 7(c) show the congruity between the
helix and the arc of circumference on which the rope is
laied.
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where 0φ  represents the position of the wire, regarding
the cylinder on which the rope is wrapped, in the
section considered, Fig. 8.
Replacing (12) in (9-10-11) it is then possible to
evaluate the derivatives, respect to è, of the members of

h . The formula (7) can be applied again in order to
find the curvature.  The difference, in every point,
between the curvature in undeformed condition,
formula (8), and deformed condition, allows to obtain
the net curvature within every wire.
From an analysis of a section it is possible to have a
complete picture of the stresses. The actual stresses in
every point of the rope can be evaluated by analysing
the variation of curvature for every wire and for a pitch.
Due to the regular behaviour of the curvature in a
section, the subsequent curvature variation can be seen

as curvature variation within a rope for a pitch, if these
are sampled in suitable way.

Fig.8 Positions of reference in the strands

5.3 Application of the data to the model
We built the rope model using the data presented in
paragraph 3 and the parameters properly set up.  The
model allows the evaluation of the upper limit of the
bending stresses in the wicks. The simulation of the sharp
edge test with a 0.75 mm knife blade radius has been
carried out.  The radius of the nominal curvature of the
rope axis, to be used in the numerical simulation, is:

mmRRR edgesharpropeecurvatureaxisrope 675,025,5___ =+=+=

(13)

The model regards this radius as uniformly applied.

5.4 Validation  of the model
The validation of the model, as before, has been carried
out through the analysis of limit situations.

s R.knife>>1 the stresses tend to 0.
s Equal pitch to 0°, all the wires (90° in the

convention used for the axial model):  the wire in
contact with the knife introduces an exactly 0.75
mm radius of curvature.  The other wires
introduce curvature directly depended from their
distance from the knife, and the radius of
curvature of this Fig. 9.

s Equal pitch to 90°, all the wires (0° in the
convention used for the axial model):  the central
wire is always subordinate to bending load, while
the others are like rings, turn out stresses.

5.5 Analysis of the bending stresses
We can now analyse the upper limit of the stresses, Fig.
10, in the wicks due to the bending on a 0,75 mm sharp
edge knife blade. We still remember the reduction of
validity for the results Fig.6.
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6 Conclusions
At the current state of the model prototype, it is not
possible to get definitive conclusions on stresses in
sharp edge test (contact with a knife blade [13]).  There
are still too many phenomena that are not considered in
the model. It is however possible to formulate some
reflections on the results carried out up to now.  We
note low stresses due to bending. Probably other
phenomena are the principal responsible for breaking.
Moreover the axial force (during Dodero fall test)
generates an enough uniform and high stress level
(actually we do not know exactly the absolute stresses
but we know that the rope can support this load, during
Dodero tests, for a limited number of times, being very
closed to the rupture strength) and so a light reduction
of rope section can generate a catastrophic process.

7 Future developments
The future developments of this rheological approach
are remarkable but there are some difficulties. Sure the
final goal of a such method is  the analytical design of a
rope but, currently, we are far from being able to model
exactly one rope composed from 60000 fibres disposed
on multiple curvatures and with huge possibilities for
fibres layout.  Following a step-by-step approach, tests
have to be made in order to validate the model
evaluating the stiffness variation due to the rope
deformation; suitable experimental parameters have to
be identified
For this purpose, dynamic tests suitably recorded on the
Dodero machine, can be carried out with different
masses.
It would be possible to implement the model with a
viscous-elastic material constituent law as well [14].
Further parameters could be measured during slow
traction tests according to an analytic-experimental
optimisation.
In both of tests it is possible to use the new equipments
available in University of Padova [15].
As far as the analytical development concerns, an exact
theory for wires analysis with more than double
curvature in requested as well as a completely vectorial
bending theory, direct consequence of the analytical
approach.
These evolutions, conceptually easy, are practically
very complex.
Dissipative phenomena deserve a particular attention. It
seems, from the results, that its contribution is
fundamental for realistic understanding the stress
distribution within a rope. One small part of it could be
already available from the viscous-elastic constituent
law but the great part, due to the sliding of adjacent
wires, still needs an efficient model.  The difficulties in
this case are enormous since would be necessary to
calculate, beyond the relative sliding, the contact forces
point by point.
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Fig. 3 Maximum axial stresses (9 KN external load) in
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Fig.4 Course of the axial load with the deformations

Fig. 9 Simulation of bending load when all the pitches
are placed to 0°: maximums axial stressses [ MPa ]

Fig. 10 Simulation of a bending load (due to Rcurv. = 0.75
mm), maximum stresses of the central wires of every
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